THE BERTINI TRANSFORMATION IN SPACE*

B١

F. R. SHARPE AND L. A. DYE

- 1. Introduction. Examples are known of involutorial transformations I having an invariant pencil of planes through a line l, such that in each plane of the pencil there is a transformation of the Geiser or the de Jonquières type. We have shown in this paper that involutorial transformations exist which have in each plane through l a Bertini transformation with 6 of the fundamental points lying on a C_6 , p=3, the other two being on l, and either fixed or variable. There is another type in which 6 of the 8 fundamental points lie on a C_6 , p=4, and in every plane through l there is a degenerate Bertini transformation. A third type is discussed in which there is a net of invariant quartic surfaces through a C_{11} , p=14. The method of obtaining this last transformation leads also to an involutorial transformation with a net of invariant surfaces of order n+1 through a C_{5n-3} of genus 12n-19. This type has on each plane through l a Geiser transformation having the 7 fundamental points on C_{5n-3} .
- 2. The involutorial Bertini transformation I_B on a cubic surface F_3 . The conics tangent to a cubic surface F_3 at two fixed points O_1 , O_2 meet F_3 in two residual points P, P' which are conjugate points of an involutorial Bertini transformation I_B on F_3 . The web of quadrics tangent to F_3 at O_1 , O_2 meet F_3 in a web of sextic curves of genus 2 which is invariant under I_B as is also the pencil of plane sections through the line $l:O_1+O_2$. If the space (y) of F_3 is transformed into a space (z) by means of the web of cubic surfaces through a fixed C_6 , p=3, on F_3 , then F_3 is transformed into a plane meeting the fundamental sextic of the transformation in 6 points O_3 , O_4 , O_4 , O_5 are the transforms of O_4 , O_4 , then O_4 becomes a plane transformation of order 17, a line going into a O_4 ; O_4 The image of each six-fold point O_4 is a O_4 : $O_$

Analytically, if $y_2 = 0$, $y_1 = 0$ are the planes tangent to F_3 at $O_1 = (1, 0, 0, 0)$, $O_2 = (0, 1, 0, 0)$, the equation of F_3 may be written

(1) $Ay_1 + By_2 + C \equiv y_1(a^2y_1y_2 + \alpha) + y_2(b^2y_1y_2 + \beta) + \gamma y_1y_2 + \delta = 0$, where $\alpha, \beta, \gamma, \delta$ are binary forms in y_3, y_4 . The transformation I_B is defined by

(2)
$$Ay_1' = By_2, By_2' = Ay_1, y_3' = y_3, y_4' = y_4.$$

^{*} Presented to the Society, December 27, 1933; received by the editors November 20, 1933.

The images of O_1 , O_2 are the sextics in which the quadrics A = 0, B = 0 meet F_3 . Since the second polars of O_1 , O_2 differ from A, B by terms containing y_2 , y_1 respectively, the quadrics have second-order contact with F_3 at O_1 , O_2 respectively and meet F_3 in sextics having triple points at O_1 , O_2 respectively.

- 3. The transformation I_B for a pencil of cubic surfaces. Since a point P determines an F_3 of the pencil (parameter λ) on which P' can be found by the method of §2, we can define involutorial space transformations by either taking O_1 , O_2 as fixed points lying on each F_3 of the pencil, or by taking one or both of them variable (the coordinates being functions of λ), on a rational curve lying on each F_3 .
- 4. Case I, O_1 , O_2 are fixed. For this case we take a pencil of cubic surfaces F_3 having in common a C_9 , p=10, through $O_1=(1, 0, 0, 0)$, $O_2=(0, 1, 0, 0)$, and write the equation of the F_3 in the form

(3)
$$F_3 \equiv F_3' - \lambda F_3''$$

$$\equiv ax_1^2 x_2 + bx_1 x_2^2 + cx_1^2 + dx_1 x_2 + ex_2^2 + fx_1 + gx_2 + h = 0,$$

where $a \equiv a' - \lambda a''$, etc., and c', c'', etc., are binary forms in x_3 , x_4 . A change of coordinate system given by

$$(4) y_1 = bx_1 + e, y_2 = ax_2 + c, y_3 = x_3, y_4 = x_4$$

will express F_3 in the form (1). The transformation (2) in terms of x_i is

(5)
$$x'_{1} = (ax_{2}B + cB - eA)Ba,$$
$$x'_{2} = (bx_{1}A - cB + eA)Ab,$$
$$x'_{3} = x_{3}ABab, x'_{4} = x_{4}ABab.$$

The surface of invariant points $K \equiv y_1A - y_2B = 0$ contains ab as a factor as does the transformation (5). The forms A, B are of degree 4 in λ and of degree 2 in x_i , so that the x_i' are of degree 5 in x_i and of degree 8 in λ . If λ is replaced by F_3'/F_3'' we have an I_{29} in which the image of O_1 is A = 0, the image of O_2 is B = 0, and the image of C_9 can be obtained by applying the transformation to an S_{29} . The table of characteristics of the I_{29} is

$$O_{1} \sim F_{14}: O_{1}^{7} + O_{2}^{6} + C_{9}^{4},$$

$$O_{2} \sim F_{14}: O_{1}^{6} + O_{2}^{7} + C_{9}^{4},$$

$$C_{9} \sim F_{56}: O_{1}^{28} + O_{2}^{28} + C_{9}^{15},$$

$$S_{1} \sim S_{29}: O_{1}^{14} + O_{2}^{14} + C_{9}^{8},$$

$$K_{12}: O_{1}^{6} + O_{2}^{6} + C_{9}^{3}.$$

Every plane through the line $l:O_1+O_2$ cuts from the F_{56} a composite curve of order 56, the 7 components of which are the images of the 7 residual intersections of C_9 with the plane. If O_i $(i=3, \dots, 9)$ is any one of these 7 points and $6O_i$ $(j=3, \dots, 9)$ are the others, then

$$O_i \sim C_8$$
: $O_1^4 + O_2^4 + O_i^3 + 6O_i^2$ $(i, j = 3, \dots, 9; i \neq j)$.

In each of these planes there is a transformation of the Bertini type of order 29. If it is transformed by a quadratic transformation having O_1 , O_2 , O_3 for fundamental points it becomes the usual Bertini transformation of order 17 with 8 six-fold points at O_1 , O_2 , O_3 .

Since C_9 is of genus 10 there are 11 trisecants of the C_9 which pass through O_1 or O_2 . Any one of these 22 lines meets an S_{29} in $14+2\cdot8=30$ points and therefore lies on the S_{29} . These lines are the fundamental lines of the second species in the I_{29} . The surface R_{42} of trisecants of C_{9} contains C_{9} as an 11-fold curve. The line l meets R_{42} in 20 points not on C_9 from which trisecants of C_9 may be drawn. In any one of the 20 planes determined by one of these trisecants and l, the 6 residual intersections of C_9 lie on a conic. Each of these 20 conics meets an S_{29} in $2 \cdot 14 + 4 \cdot 8 = 60$ points and therefore lies doubly on the S_{29} . They are the fundamental conics of the second species in the I_{29} . The tangent planes to the pencil of cubic surfaces at O_1 form a pencil of planes through the tangent line to C_9 at O_1 . The plane of the pencil which passes through O_2 cuts from the corresponding F_3 a cubic curve with a double point at O_1 and through O_2 and the 6 residual intersections of C_9 with the plane. There is another such cubic curve with the roles of O_1 , O_2 interchanged. Each of these cubics meets an S_{29} in $28+14+6\cdot8=90$ points and hence lies triply on the S_{29} . They are the fundamental cubics of the second species in the I_{29} . There exist then 22 lines, 20 conics, and 2 cubics which are parasitic curves in the involutorial transformation I_{29} .

If the C_9 is composed of a space cubic C_3 through O_1 , O_2 and a C_6 , p=3, $[C_3, C_6]=8$, the surface F_{56} breaks up into an $F_8:O_1^4+O_2^4+C_3^3+C_6^2$, the image of C_3 , and an $F_{48}:O_1^{24}+O_2^{24}+C_3^{12}+C_6^{13}$, the image of C_6 . If we transform the space (x) into a space (x) by means of the cubic transformation $T_{3,3}:C_6$ the pencil of F_3 's becomes a pencil of planes through the line l' which is the transform of C_3 . In each plane through l' there is a Bertini transformation of order 17. The transform of the surface F_8 of trisecants of C_6 is C_6 ', and to O_1 , O_2 correspond the points O_1 , O_2 . The characteristics of the O_2 in the O_3 in the O_4 space are

$$Q_1 \sim F_{10}$$
: $Q_1^7 + Q_2^6 + l'^4 + C_6'^2$,
 $Q_2 \sim F_{10}$: $Q_1^6 + Q_2^7 + l'^4 + C_6'^2$,

$$l' \sim F_8: Q_1^4 + Q_2^4 + l'^3 + C_6'^2,$$

$$C_6' \sim F_{64}: Q_1^{40} + Q_2^{40} + l'^{28} + C_6'^{13},$$

$$S_1 \sim S_{29}: Q_1^{18} + Q_2^{18} + l'^{12} + C_6'^6,$$

$$K_{12}: Q_1^6 + Q_2^6 + l'^3 + C_6'^3.$$

In the (x) space in place of the surface $R_{42}:C_9^{11}$ of trisecants of C_9 we have the surface $R_8:C_6^3$ of trisecants of C_6 , the surface $R_8':C_3^4+C_6$ of bisecants of C_3 which meet C_6 , and the surface $R_{26}:C_3^7+C_6^7$ of bisecants of C_6 which meet C_8 . The 22 parasitic lines in the (x) space are (a) the 4 bisecants of C_3 through O_1 which meet C_6 , (b) the 4 bisecants of C_3 through O_2 which meet C_6 , (c) the 7 bisecants of C_6 through O_1 , (d) the 7 bisecants of C_6 through O_2 . The lines of types (a), (b) correspond to parasitic conics in the (x) space through O_1 or O_2 and meeting O_3 in 5 points. The lines of types O_3 in 5 points. The lines of types O_3 in 6 trisecants of O_3 in 6 trisecants of O_4 in 5 points. The lines of types O_3 in 8 trisecants of O_4 in 8 trisecants of O_4 in 8 trisecants of O_4 in 9 points O_3 in 10 parasitic and correspond in the O_3 space to the 8 points O_3 in 10 parasitic and correspond in the O_3 space to the 8 points O_3 in 10 parasitic and correspond in the O_3 space to the 8 points O_3 in 10 parasitic and correspond in the O_3 space to the 8 points O_3 in 10 parasitic and correspond in the O_3 space to the 8 points O_3 in 10 parasitic and correspond in the O_3 space to the 8 points O_3 in 10 parasitic and correspond in the O_3 space to the 8 points O_3 in 10 parasitic and correspond in the O_3 space to the 8 points O_3 in 10 parasitic and correspond in the O_3 space to the 8 points O_3 in 10 parasitic and O_3 in 10 parasit and O_3 in 10 parasitic and O_3 in 10 parasitic and O_3 i

The line l meets the surface $R_8:C_6^3$ in 8 points, hence 8 trisecants of C_6 meet l. Each of the planes determined by l and one of these trisecants meets the F_3 containing the trisecant in a residual conic which is parasitic. The 8 conics go into parasitic cubics in the (z) space which have double points on C_6' and pass through Q_1 , Q_2 , and 5 points on C_6' . The surface $R_{26}:C_3{}^7+C_6{}^7$ is met by l in 12 points, hence 12 bisecants of C_6 meet C_3 and l. In each of the 12 planes determined by these lines and l there is a parasitic conic which corresponds to a parasitic conic in the (z) space through Q_1 , Q_2 , and 4 points of C_6' . The two parasitic cubics with double points at O_1 or O_2 and through O_2 or O_1 and 6 points of C_6 correspond to similar cubics in the (z) space. The I_{29} in the (z) space has 22 lines, 20 conics, and 10 cubics which are fundamental curves of the second species.

5. Case II, O_1 is variable on a space cubic curve C_3 . We take a pencil of cubic surfaces (parameter λ) through a space cubic curve C_3 containing the points $O_1 = (1, \lambda^3, \lambda^2, \lambda)$, $O_2 = (0, 1, 0, 0)$, and having the equation

(6)
$$F_3 \equiv \begin{vmatrix} (px) & x_1 & x_4 \\ (qx) & x_4 & x_3 \\ (rx) & x_3 & x_2 \end{vmatrix} \equiv F_3' - \lambda F_3'' \equiv (px)H_p + (qx)H_q + (rx)H_r = 0,$$

where $(px) = p_1x_1 + p_2x_2 + p_3x_3 + p_4x_4$, $p_i = p_i' - \lambda p_i''$, etc., and H_p , H_q , H_r are quadrics through C_3 . A point P(x) determines an F_3 of the pencil and a definite point O_1 so that by the construction of §2 we can determine a point P'(x'). A change of variables is made by

$$y_1 = p_2 x_4 - q_2 x_1,$$

$$y_2 = p(x_2 - 2\lambda x_3 + \lambda^2 x_4) - q(x_3 - 2\lambda x_4 + \lambda^2 x_1),$$

$$y_3 = x_3 - \lambda x_4,$$

$$y_4 = x_4 - \lambda x_1,$$

where $p = \lambda P - Q$, $q = \lambda Q - R$, $P = p_1 + p_2 \lambda^3 + p_3 \lambda^2 + p_4 \lambda$, etc. The planes $y_1 = 0$, $y_2 = 0$ are the tangent planes at O_2 , O_1 respectively, and the planes $y_3 = 0$, $y_4 = 0$ are a pair of planes through the line $l:O_1 + O_2$. The pencil of cubic surfaces is now of the form (1) and the transformation (2) gives I_B .

The equations of the surfaces A = 0, B = 0, K = 0 may be written in terms of x_i and y_i as follows:

$$A \equiv mp \left[p(PH_p + QH_q + RH_r) + (y_3 - \lambda y_4) \left\{ \lambda q(px) - M(qx) + p(rx) \right\} \right]$$

$$- y_2 \left[m(y_3 - \lambda y_4) (\lambda q p_2 - Mq_2 + pr_2) + p y_4 (Qp_2 - Pq_2) \right] = 0,$$

$$B \equiv mp \left[m(p_2H_p + q_2H_q + r_2H_r) - y_4 \left\{ q_2(px) - p_2(qx) \right\} \right]$$

$$- y_1 \left[m(y_3 - \lambda y_4) (\lambda q p_2 - Mq_2 + pr_2) + p y_4 (Qp_2 - Pq_2) \right] = 0,$$

$$K \equiv y_1 \left[p(PH_p + QH_q + RH_r) + (y_3 - \lambda y_4) \left\{ \lambda q(px) - M(qx) + p(rx) \right\} \right]$$

$$- y_2 \left[m(p_2H_p + q_2H_q + r_2H_r) - y_4 \left\{ q_2(px) - p_2(rx) \right\} \right] = 0,$$

where $m \equiv \lambda p_2 - q_2$, $M \equiv \lambda p + q$. The surfaces A = 0, B = 0 are of the second degree in x_i and of degrees 16, 10 in λ respectively. The surface K = 0 is of the third degree in x_i and of degree 9 in λ .

We transform the space (x) into a space (z) as was done in the latter part of §4. A surface of the web in the (x) space goes into a surface of the web in the (z) space such that in any plane through l' there is a Bertini transformation of order 17. By this I_{17} the image of l' is a $C_5:Q_1+Q_2+6Q^2$ which with l' makes up a $C_6:8Q^2$ that is the plane section of a sextic surface having Q_1, Q_2, C_6' as double elements. This sextic surface is the transform of a quadric surface through C_3 and tangent to F_3 at O_1, O_2 . This quadric which is the image of C_3 and is of the sixth degree in λ has the equation

$$pp_2H_p + pq_2H_q + (\lambda pq_2 - \lambda qp_2 + qq_2)H_r = 0.$$

Any plane through l' is invariant under I_B , hence a pencil of surfaces of the web in the (z) space is made up of the pencil of planes through l' together with the image surfaces of l', Q_1 , Q_2 . Since the image of Q_1 by the I_{17} in a plane through l' is a $C_6:Q_1^3+Q_2^2+6Q^2$ and since A=0 is of order 16 in λ , the image of Q_1 by the I_B in the (z) space is a surface of order 6+16=22 on which l' is a 16-fold line with 3 sheets of the surface having contact along l'. The point Q_1 is 16+3=19-fold; Q_2 is a 16+2=18-fold point; C_6' is a double curve. In the same way we obtain the surfaces corresponding to Q_2 and l', and

the invariant surface K. The table of characteristics of the I_{51} is

$$l' \sim F_{12} : l'^{7+t} + C_{6}'^{2} + Q_{1}^{8} + Q_{2}^{8},$$

$$Q_{1} \sim F_{22} : l'^{16+3t} + C_{6}'^{2} + Q_{1}^{19} + Q_{2}^{18},$$

$$Q_{2} \sim F_{16} : l'^{10+2t} + C_{6}'^{2} + Q_{1}^{12} + Q_{2}^{13},$$

$$C_{6}' \sim F_{112} : l'^{76+12t} + C_{6}'^{13} + Q_{1}^{88} + Q_{2}^{88},$$

$$S_{1} \sim S_{51} : l'^{34+6t} + C_{6}'^{6} + Q_{1}^{40} + Q_{2}^{40},$$

$$K_{18} : l'^{9+3t} + C_{6}'^{3} + Q_{1}^{12} + Q_{2}^{12},$$

where the coefficient of t indicates the number of fixed tangent planes at a point of l'.

In determining the number of parasitic lines, conics, and cubics the methods in the previous section have to be changed when the variable point Q_1 is involved. There are 7 bisecants of C_6' through Q_2 and 8 trisecants of C_6' meeting l' which are parasitic. In any plane λ through l' the 15 bisecants of C_6' meet l' in 15 points μ ; through any point μ on l' the 7 bisecants of C_6' determine 7 planes λ through l'. The number of coincidences in the (λ, μ) correspondence is 15+7=22, and hence in 22 positions of Q_1 a bisecant of C_6' can be drawn from Q_1 in the plane through l' associated with Q_1 . These bisecants are parasitic lines.

There are 4 conics through Q_2 and 5 points of C_6' in planes through l' which are parasitic. In any plane λ through l' the 6 conics through 5 points of C_6' meet l' in 12 points μ ; through any point μ on l' the 4 conics through 5 points of C_6' lie in 4 planes λ through l'. There are 12+4=16 coincidences in this (λ, μ) correspondence and therefore 16 positions of Q_1 such that Q_1 and 5 points of C_6' lie on a conic in the plane through l' associated with Q_1 . In any plane λ through l' the 15 conics through Q_2 and 4 points of Q_1' in 15 points Q_2' through any point Q_2' and 4 points of Q_2' and 4 points of Q_2' lie in 12 planes Q_2' through Q_2' the 15+12=27 coincidences of this Q_2' correspondence determine 27 positions of Q_1' such that Q_1' , Q_2' , and 4 points of Q_2' lie on a conic in the plane through Q_2' associated with Q_2' . These 47 conics are all parasitic.

There are 2 values of λ given by m=0 for which the tangent plane to F_3 at O_2 contains O_1 , and there are 5 values of λ given by p=0 for which the tangent plane to F_3 at O_1 contains O_2 . In each of these 7 planes there is a cubic with a double point at O_2 or O_1 and passing through O_1 or O_2 and 6 points of C_6 . These 7 cubics correspond to 7 similar cubics in the (z) space. In any plane λ through l' there are 6 cubics with a double point on C_6 and through O_2 and the 5 remaining points of O_3 . These 6 cubics meet O_3 in 12 points O_4 .

Through any point μ on l' there are 8 cubics with a double point on C_6' and through Q_2 and the other 5 points of C_6' . These cubics lie in 8 planes λ through l' so that there are 12+8=20 coincidences in the (λ, μ) correspondence and 20 positions of Q_1 such that Q_1 , Q_2 , and the 6 points of C_6' lie on a cubic with a double point at one of these latter points. These cubics lie in planes through l' associated with the positions of Q_1 . There are then 37 lines, 47 conics, and 27 cubics which are fundamental curves of the second species in the I_{51} .

6. Case III, O_1 , O_2 are both variable on a space cubic C_3 . To illustrate the case where the points O_1 , O_2 are variable on a rational curve which is part of the basis curve of a pencil of cubic surfaces we again utilize a rational space cubic. Other rational curves might be considered and other arrangements of the points O_1 , O_2 might be used, but the transformations obtained resemble the I_{51} in Case II and the I_{51} derived in the following case.

The points $O_1 = (1, \mu^3, \mu^2, \mu)$, $O_2 = (1, -\mu^3, \mu^2, -\mu)$, where $\lambda = \mu^2$, lie on the C_3 which with C_6 makes up the basis of the pencil of cubic surfaces F_3 given by (6). A change of coordinate system is made by

$$y_1 = \bar{p}(x_2 + 2\mu x_3 + \mu^2 x_4) - \bar{q}(x_3 + 2\mu x_4 + \mu^2 x_1),$$

$$y_2 = p(x_2 - 2\mu x_3 + \mu^2 x_4) - q(x_3 - 2\mu x_4 + \mu^2 x_1),$$

$$y_3 = x_2 - \mu^2 x_4,$$

$$y_4 = x_3 - \mu^2 x_1,$$

where $p = \mu P - Q$, $q = \mu Q - R$, $P = p_1 + p_2 \mu^3 + p_3 \mu^2 + p_4 \mu$, etc., and the dashed letters indicate a change of sign in μ . The surface F_3 is now in the form (1) and the involutorial transformation (2) is determined. We have the following expressions for A, B, K written in terms of x_i and y_i for the sake of conciseness:

$$\begin{split} A &\equiv 4\mu^2 \overline{M} \, M \left[M (PH_p + QH_q + RH_r) - (y_3 - \mu y_4) \left\{ -\mu q(px) + M(qx) - p(rx) \right\} \right] \\ &\quad + y_2 \left[y_3 \left\{ \overline{M} (\mu \overline{P}q - \overline{Q}M + \overline{R}p) + M(-\mu P \overline{q} - Q\overline{M} + R \overline{p}) \right\} \right. \\ &\quad + \mu y_4 \left\{ -\overline{M} (\mu \overline{P}q - \overline{Q}M + \overline{R}p) + M(-\mu P \overline{q} - Q\overline{M} + R \overline{p}) \right\} \right], \\ B &\equiv 4\mu^2 M \overline{M} \left[\overline{M} (\overline{P}H_p + \overline{Q}H_p + \overline{R}H_r) - (y_3 + \mu y_4) \left\{ \mu \overline{q}(px) + \overline{M}(qx) - \overline{p}(rx) \right\} \right] \\ &\quad + y_1 \left[y_3 \left\{ \overline{M} (\mu \overline{P}q - \overline{Q}M + \overline{R}p) + M(-\mu P \overline{q} - Q\overline{M} + R \overline{p}) \right\} \right. \\ &\quad + \mu y_4 \left\{ -\overline{M} (\mu \overline{P}q - \overline{Q}M + \overline{R}p) + M(-\mu P \overline{q} - Q\overline{M} + R \overline{p}) \right\} \right], \\ K &\equiv y_1 \left[M (PH_p + QH_q + RH_r) - (y_3 - \mu y_4) \left\{ -\mu q(px) + M(qx) - p(rx) \right\} \right] \\ &\quad - y_2 \left[\overline{M} (\overline{P}H_p + \overline{Q}H_q + \overline{R}H_r) - (y_3 + \mu y_4) \left\{ \mu \overline{q}(px) + \overline{M}(qx) - \overline{p}(rx) \right\} \right], \end{split}$$

where $M = \mu p + q$.

The surfaces A=0, B=0 are of order 2 in x_i and of order 13 in μ^2 after the removal of a factor μ^2 . The invariant surface K=0 is of order 9 in μ^2 and of order 3 in x_i . The image of C_3 which is the quadric which contains C_3 and is tangent to F_3 at O_1 , O_2 is of order 6 in μ^2 and has the equation

$$(\bar{p}M - p\overline{M})H_p + \mu(p\bar{q} + q\bar{p})H_q + \mu(\bar{q}M + q\overline{M})H_r = 0.$$

The table of characteristics of the I_B in the (z) space may be obtained as in Case II and with the same results except that the images of the points Q_1 , Q_2 combine and the joint image is

$$(Q_1, Q_2) \sim F_{38}: l'^{26+5t} + C_6'^4 + (Q_1, Q_2)^{31}.$$

In any plane λ through l' the 15 bisecants of C_6' meet l' in 15 points μ ; through any point μ on l' the 7 bisecants of C_6' determine 7 planes λ through l'. In the correspondence (λ, μ) there are 15+7+7=29 coincidences since $\lambda = \mu^2$, and hence in 29 positions of the pair of points Q_1 , Q_2 a bisecant of C_6' can be drawn from one of them in the plane through l' associated with the pair. There are 8 trisecants of C_6' which meet l'. These 37 lines are parasitic in I_{51} .

In any plane λ through l' the 6 conics through 5 points of C_6' meet l' in 12 points μ ; through any point μ on l' the 4 conics through 5 points of C_6' lie in 4 planes λ through l'. The number of coincidences in the (λ, μ) correspondence is 12+4+4=20 and hence in 20 positions of the pair of points Q_1, Q_2 , one of the pair and 5 points of C_6' lie on a conic in the plane through l' associated with the pair. In any plane λ there is a pencil of conics through each of the 15 sets of 4 of the 6 points of C_6' . Each pencil determines an involution on l' which has one pair in common with the involution of points μ , hence 15 pairs of points μ^2 are determined. Given any pair of points μ^2 on l' there are 12 planes λ through l' in which there are conics through the pair μ^2 and 4 points of C_6' . In the correspondence (λ, μ^2) the 15+12=27 coincidences fix 27 positions of the pair Q_1 , Q_2 such that conics in the associated planes pass through them and 4 of the points of C_6' .

The 7 values of λ given by $M\overline{M} = 0$ determine 7 planes tangent to F_3 at O_1 or O_2 which pass through O_2 or O_1 . From the associated F_3 each of these planes cuts a cubic with a double point at O_1 or O_2 and passing through O_2 or O_1 and 6 points of C_6 . These 7 cubics correspond to similar cubics in the (z) space which are parasitic in the I_{51} . In any plane λ through l' there are 6 pencils of cubics through the 6 points of C_6 and with a double point at one of them. Each pencil determines an involution of the third order on l' which has 2 pairs in common with the involution of points μ , hence to a λ correspond 12 pairs of points μ^2 . Given any pair of points μ^2 on l' there are 8 planes λ

through l' in which there are cubics through the pair μ^2 and 6 points of C_6' and which have a double point at one of the points of C_6' . The correspondence (λ, μ^2) has 12+8=20 coincidences which determine 20 positions of the pair Q_1 , Q_2 such that in the associated plane there will be a cubic through Q_1 , Q_2 and the 6 points of C_6' and having a double point at one of the points of C_6' . Hence as in Case II we have 37 lines, 47 conics, and 27 cubics which are fundamental curves of the second species in the I_{51} .

7. A Bertini transformation on a cubic variety in S_4 . In a space of four dimensions we take a cubic variety V_3 with a double point at $O_5 = (0, 0, 0, 0, 1)$ and through the points $O_1 = (1, 0, 0, 0, 0)$, $O_2 = (0, 1, 0, 0, 0)$. The equation of the variety is

 $V_3 \equiv \phi_2 x_5 + \phi_3 = 0,$

where ϕ_2 , ϕ_3 are quaternary forms in x_1 , x_2 , x_3 , x_4 with the x_1^3 , x_2^3 terms missing in ϕ_3 . The conics tangent to V_3 at the points O_1 , O_2 meet V_3 in two residual points P, P' which are conjugate points in a Bertini involution J_B on V_3 . This involution can be mapped on the 3-space $x_5=0$, and a Bertini involution I_B in 3-space is thus determined. The hyperplane $x_5=0$ meets V_3 in the cubic surface $\phi_3=0$, and meets the tangent hypercone to V_3 at O_5 in the quadric $\phi_2=0$. The surfaces $\phi_2=0$, $\phi_3=0$ meet in a sextic curve C_6 of genus 4. Any plane π through the line O_1O_2 meets C_6 in 6 points R which lie on a conic. The hyperplanes through O_1 , O_2 are invariant under I_B , and the planes π are invariant under I_B . Since the 6 points R lie on a conic in each plane π , the Bertini involution in such a plane is degenerate and of the form $I_{13}:O_1^6+O_2^6+O_1^6+O_2^6$, with an invariant curve $I_1^6:O_1^6+O_2^6+O_2^6+O_1^6+O_2^6+O_2^6+O_1^6+O_2^6+O_2^6+O_1^6+O_2^$

$$O_1 \sim F_6: O_1^3 + O_2^2 + C_6^2,$$
 $O_2 \sim F_6: O_1^2 + O_2^3 + C_6^2,$
 $C_6 \sim F_{24}: O_1^{12} + O_2^{12} + C_6^7,$
 $S_1 \sim S_{13}: O_1^6 + O_2^6 + C_6^4,$
 $K_7: O_1^3 + O_2^3 + C_6^2.$

The 6 bisecants of C_6 from O_1 and the 6 from O_2 are parasitic lines in I_B and correspond to lines on the V_3 through O_1 or O_2 . To determine the number of parasitic conics we must find the number of conics which lie on V_3 and pass through O_1 and O_2 , since in any such conic the construction used to determine I_B will fail in the sense that to a point on the conic corresponds the whole conic. By a proper choice of coordinate system we can write the equation of any cubic variety in the form

(7)
$$x_1^2x_2 + x_1x_2^2 + ax_1 + bx_2 + cx_1x_2 + d = 0$$

where a, b, c, d are ternary forms in x_3 , x_4 , x_5 . The left hand member of (7) can be factored as follows:

$$(x_1x_2+b)(x_1+x_2+c),$$

if

(8)
$$a-b=0 \text{ and } ac-d=0.$$

Equations (8) represent two hypercones of the second and third orders respectively whose rulings are planes. The 6 planes common to the two hypercones cut conics from the cubic variety through the points O_1 , O_2 . Hence there are 6 fundamental conics of the second species in the I_{13} besides the 12 lines of the second species.

8. A family of space Bertini transformations. A net of planes $\pi \equiv \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$ through the point (0, 0, 0, 1) and a net of cubic surfaces

(9)
$$F_3 \equiv x_4(ax)^2 + x_1x_2(bx) \equiv \lambda_1 F_3' + \lambda_2 F_3'' + \lambda_3 F_3''' = 0,$$

where $(ax)^2$ and (bx) are quaternary forms in x_1 , x_2 , x_3 , x_4 , and

$$a_{ij} \equiv \lambda_1 a'_{ij} + \lambda_2 a''_{ij} + \lambda_3 a'''_{ij}$$
, and $b_i \equiv \lambda_1 b'_i + \lambda_2 b''_i + \lambda_3 b'''_i$,

through the lines $l_1 \equiv x_2 = x_4 = 0$ and $l_2 \equiv x_1 = x_4 = 0$ may be used to determine a transformation of the Bertini type. A point P(x) determines a set of λ_i and hence a plane π and a surface F_3 . The plane π cuts the lines l_1 , l_2 in a pair of points $O_1(\lambda_3, 0, -\lambda_1, 0)$, $O_2(0, \lambda_3, -\lambda_2, 0)$. The conic through P(x) and tangent to F_3 at O_1 and O_2 will meet F_3 in a residual point P'(x') which is the conjugate of P(x) in an involutorial transformation I.

If we make the linear transformation

$$y_1 = \lambda_3 B_2 x_1 + A_2 x_4,$$

$$y_2 = \lambda_3 B_1 x_2 + A_1 x_4,$$

$$y_3 = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3,$$

$$y_4 = x_4,$$

where

$$B_{1} \equiv b_{1}\lambda_{3} - b_{3}\lambda_{1},$$

$$B_{2} \equiv b_{2}\lambda_{3} - b_{3}\lambda_{2},$$

$$A_{1} \equiv a_{11}\lambda_{3}^{2} - 2a_{13}\lambda_{1}\lambda_{3} + a_{33}\lambda_{1}^{2},$$

$$A_{2} \equiv a_{22}\lambda_{3}^{2} - 2a_{23}\lambda_{2}\lambda_{3} + a_{33}\lambda_{2}^{2}.$$

then equation (9) is in the form of (1), and the transformation (2) may be used to obtain

$$x_1' = B_1 B(By_2 - A_2 Ay_4),$$

$$x_2' = B_2 A(Ay_1 - A_1 By_4),$$

$$x_3' = -B_1 B(By_2 - A_2 Ay_4) - B_2 A(Ay_1 - A_1 By_4),$$

$$x_4' = \lambda_3 B_1 B_2 A By_4,$$

where

$$A \equiv B_{1}^{2}y_{1}y_{2} + B_{2}y_{4}^{2}[A_{1}^{2}B_{2} + 2\lambda_{3}^{2}B_{1}^{2}(a_{14}\lambda_{3} - a_{34}\lambda_{1}) + A_{1}B_{1}(2a_{13}\lambda_{2}\lambda_{3} + 2a_{23}\lambda_{1}\lambda_{3} - 2a_{12}\lambda_{3}^{2} - 2a_{33}\lambda_{1}\lambda_{2} - b_{4}\lambda_{3}^{2})],$$

$$B \equiv B_{2}^{2}y_{1}y_{2} + B_{1}y_{4}^{2}[A_{2}^{2}B_{1} + 2\lambda_{3}^{2}B_{2}^{2}(a_{24}\lambda_{3} - a_{34}\lambda_{2}) + A_{2}B_{2}(2a_{13}\lambda_{2}\lambda_{3} + 2a_{23}\lambda_{1}\lambda_{3} - 2a_{12}\lambda_{3}^{2} - 2a_{33}\lambda_{1}\lambda_{2} - b_{4}\lambda_{3}^{2})].$$

The λ_i are now replaced by

$$\lambda_1 \equiv \phi_1 \equiv x_2 F_3^{\prime\prime\prime} - x_3 F_3^{\prime\prime},$$
 $\lambda_2 \equiv \phi_2 \equiv x_3 F_3^{\prime} - x_1 F_3^{\prime\prime\prime},$
 $\lambda_3 \equiv \phi_3 \equiv x_1 F_3^{\prime\prime} - x_2 F_3^{\prime}.$

The quartic surfaces $\phi_i = 0$ have in common the lines l_1 , l_2 , and a residual curve C_{11} of order 11 and genus 14. The surfaces A = 0, B = 0 which are the images of the lines l_1 , l_2 are of order 8 in ϕ_i and 2 in x_i after a factor ϕ_3^2 is removed. The factor $\phi_3^5 B_1 B_2$ can be removed from the transformation, and the invariant surface $K \equiv y_1 A - y_2 B = 0$ has the factor $\phi_3^3 B_1 B_2$. The characteristics of the transformation are

$$l_{1} \sim F_{34} : l_{1}^{11} + l_{2}^{10} + C_{11}^{8},$$

$$l_{2} \sim F_{34} : l_{1}^{10} + l_{2}^{11} + C_{11}^{8},$$

$$C_{11} \sim F_{204} : l_{1}^{66} + l_{2}^{66} + C_{11}^{47},$$

$$S_{1} \sim S_{69} : l_{1}^{22} + l_{2}^{22} + C_{11}^{16},$$

$$K_{27} : l_{1}^{9} + l_{2}^{9} + C_{11}^{6}.$$

The x parasitic lines of I are trisecants of C_{11} which meet either l_1 or l_2 . Since C_{11} meets l_1 in 4 points there are 7 residual intersections R_i in a plane through l_1 . In any such plane a line R_iR_i meets l_1 in a point P, and through each of R_i and R_j pass 5 other bisecants of C_{11} meeting l_1 in 10 points Q. If h' is the number of bisecants of C_{11} through any point of l_1 , the points P, Q are in (10h', 10h') correspondence. The 20h' coincidences are determined by the x trisecants of C_{11} meeting l_1 , the r' tangents of C_{11} meeting l_1 , and the 4 tangents to C_{11} where it meets l_1 . Hence

$$20h' = 6x + 5r' + 30.4$$

Since the C_{11} is of class r=48 and has h=31 apparent double points, then

 $h' = h - 4 \cdot 3/2 = 25$, and $r' = r - 2 \cdot 4 = 40$. These values make x = 30, but among the 30 trisecants the line l_2 , which is a quadrisecant, is counted 4 times. Hence there are 26 trisecants of C_{11} meeting l_1 and 26 more which meet l_2 . These 52 lines are the parasitic lines of the transformation I.

Let y be the number of parasitic conics and z be the number of parasitic cubics of I. The complete intersection of two surfaces of the web of S_{69} is made up of

$$69^2 = 69 + 22^2 + 22^2 + 11 \cdot 16^2 + 52 + 8y + 27z,$$

and the complete intersection of an S_{69} and the K_{27} is made up of

$$69 \cdot 27 = 27 + 9 \cdot 22 + 9 \cdot 22 + 6 \cdot 16 \cdot 11 + 52 + 4y + 9z.$$

The solution of these equations is y=45, z=18, whence we can conclude that the fundamental curves of the second species in I consist of 52 lines, 45 conics, and 18 cubics.

9. A family of space Geiser transformations. If $F_n=0$ is a surface of order n with an (n-2)-fold line $l=x_3=x_4=0$, the equations

(10)
$$\pi \equiv \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$$
,

(11)
$$F_n = ax_1^2 + bx_2^2 + 2hx_1x_2 + 2fx_2 + 2gx_1 + c = \lambda_1 F_n' + \lambda_2 F_n'' + \lambda_3 F_n''' = 0$$
,

where $a = \lambda_1 a' + \lambda_2 a'' + \lambda_3 a'''$, etc., and a', a'', a''', etc., are binary forms in x_3 , x_4 , define a net of plane curves C_n of order n with an (n-2)-fold point $Q = (\lambda_2, -\lambda_1, 0, 0)$. A line through Q and a point P(x) on C_n meets it in a residual point P'(x'), thus defining an involutorial transformation I having the invariant net of surfaces

$$k_1\phi_1 + k_2\phi_2 + k_3\phi_3$$

$$\equiv k_1(x_2F_n''' - x_3F_n') + k_2(x_3F_n' - x_1F_n''') + k_3(x_1F_n'' - x_2F_n') = 0.$$

The pencil of planes $p = x_4 - \mu x_3 = 0$ through l are invariant under I and in any such plane F_n takes the form

$$(12) ax_1^2 + bx_2^2 + cx_3^2 + 2hx_1x_2 + 2fx_2x_3 + 2gx_1x_3 = 0,$$

where the coefficients are polynomials in μ . This net of conics enables us to map I on a double space $S(\lambda_1:\lambda_2:\lambda_3, \mu)$. A plane

$$(13) m_1x_1 + m_2x_2 + m_3x_3 + m_4x_4 = 0$$

is mapped on S by eliminating x_i between (10) and (13) and using $x_4 = \mu x_3$. The values of x_i thus obtained are substituted in (12) giving

$$a(m_2\lambda_3 - \bar{m}_3\lambda_2)^2 + b(\bar{m}_3\lambda_1 - m_1\lambda_3)^2 + c(m_1\lambda_2 - m_2\lambda_1)^2 + 2h(m_2\lambda_3 - \bar{m}_3\lambda_2)(\bar{m}_3\lambda_1 - m_1\lambda_3) + 2f(\bar{m}_3\lambda_1 - m_1\lambda_3)(m_1\lambda_2 - m_2\lambda_1) + 2g(m_2\lambda_3 - \bar{m}_3\lambda_2)(m_1\lambda_2 - m_2\lambda_1) = 0, \text{ where } \bar{m}_3 \equiv m_3 + \mu m_4,$$

which must be identical with

$$(m_1x_1 + m_2x_2 + m_3x_3 + m_4x_4)(m_1x_1' + m_2x_2' + m_3x_3' + m_4x_4') = 0.$$

From this identity we have

$$x_{1}x'_{1} = b\lambda_{3}^{2} - 2f\lambda_{2}\lambda_{3} + c\lambda_{2}^{2},$$

$$x_{2}x'_{2} = c\lambda_{1}^{2} - 2g\lambda_{1}\lambda_{3} + a\lambda_{3}^{2},$$

$$x_{3}x'_{3} = a\lambda_{2}^{2} - 2h\lambda_{1}\lambda_{2} + b\lambda_{2}^{2},$$

$$x'_{4} = \mu x'_{3}.$$

If we replace μ by x_4/x_3 and λ_i by ϕ_i we have the transformation I in the form

$$x_1x_1' = b\phi_3^2 - 2f\phi_2\phi_3 + c\phi_2^2,$$

$$x_2x_2' = c\phi_1^2 - 2g\phi_1\phi_3 + a\phi_3^2,$$

$$x_3' = x_3(a\phi_2^2 - 2h\phi_1\phi_2 + b\phi_2^2),$$

$$x_4' = x_4(a\phi_2^2 - 2h\phi_1\phi_2 + b\phi_2^2),$$

where x_1 , x_2 are factors of the first two equations respectively. The surfaces $\phi_i = 0$ are of order n+1 and have l as an (n-2)-fold line. The residual basis curve of the net of ϕ_i is a C_{5n-3} of order 5n-3 and genus 12n-19 through the point (0,0,0,1). The image of l in I is the surface $L \equiv a\phi_2^2 - 2h\phi_1\phi_2 + b\phi_2^2 = 0$, which is of order 3 in ϕ_i and of order n-2 in x_3 , x_4 . The image in S of the invariant surface K has the equation

$$\begin{vmatrix} a & h & g & \lambda_1 \\ h & b & f & \lambda_2 \\ g & f & c & \lambda_3 \\ \lambda_1 & \lambda_2 & \lambda_3 & 0 \end{vmatrix} = 0,$$

which corresponds to K^2 in the space (x). Hence K is of order 2 in ϕ_i and of order n-1 in x_3 , x_4 . The table of characteristics of I is

$$l \sim L_{4n+1}: l^{4n-7} + C_{5n-3}^{3},$$
 $C_{5n-3} \sim F_{12n+3}: l^{12n-18} + C_{5n-3}^{8},$
 $S_{1} \sim S_{4n+2}: l^{4n-6} + C_{5n-3}^{3},$
 $K_{3n+1}: l^{3n-5} + C_{5n-3}^{2}.$

1934]

In any plane p through l there is an ordinary Geiser transformation, therefore the C_{5n-3} meets such a plane in the 7 fundamental points R_i of the Geiser transformation and in 5n-10 points on l. The section of C_{5n-3} by the plane $x_3=0$ is the point (0, 0, 0, 1) and 6 points lying on the conic $x_3=0$, $F_n'''=0$. Hence on this plane the Geiser transformation degenerates and the conic is parasitic for I.

The x parasitic lines of I are trisecants of C_{5n-3} meeting l. Since C_{5n-3} meets any plane p in 7 points not on l the method of §8 may be used in determining the number of trisecants of C_{5n-3} which meet l. The number x = 15n - 15 is obtained from the equation

$$20h' = 6x + 5r' + 30(5n - 10),$$

where r' = 24n - 26, and h' = 18n - 26. Therefore the fundamental curves of the second species for I consist of 15n - 15 lines and one conic.

CORNELL UNIVERSITY, ITHACA, N. Y.